Incremental Process Mining
نویسندگان
چکیده
The problem of synthesis of Petri nets from transition systems or languages has many applications, ranging from CAD for VLSI to medical applications, among others. The most common algorithms to accomplish this task are based on the theory of regions. However, one of the problems of such algorithms is its space requirements: for real-life or industrial instances, some of the region-based algorithms cannot handle in memory the internal representation of the input or the exploration lattice required. In this paper, the incremental derivation of a basis of regions and the later partitioned basis exploration is presented, which allows the splitting of large inputs.
منابع مشابه
Incremental Workflow Mining for Process Flexibility
Incremental workflow mining is a technique for automatically deriving a process model from the on-going executions of a process. This way, the process model becomes more and more accurate, and is automatically adapted when the process is being changed. Therefore, incremental workflow mining could help in flexible workflow support: In this paper, we describe a setting that combines incremental w...
متن کاملComposition of Mining Contexts for Efficient Extraction of Association Rules
Association rule mining often requires the repeated execution of some extraction algorithm for different values of the support and confidence thresholds, as well as for different source datasets. This is an expensive process, even if we use the best existing algorithms. Hence the need for incremental mining, whereby mining results already obtained can be used to accelerate subsequent steps in t...
متن کاملClassical and Incremental Classification in Data Mining Process
Knowledge Discovery in Databases (KDD) is an iterative and multi step process that aims at extracting previously unknown and hidden patterns from a huge volume of databases. Data mining is a stage of the entire KDD process that involves applying a particular data mining algorithm to extract an interesting knowledge. One of the important problems that are used by data mining community is so-call...
متن کاملA Novel Incremental Approach to Association Rules Mining in Inductive Databases
Constraints-based mining languages are widely exploited to enhance the KDD process. In this paper we propose a novel incremental approach to extract itemsets and association rules from large databases. Here incremental is used to emphasize that the mining engine does not start from scratch. Instead, it exploits the result set of previously executed queries in order to simplify the mining proces...
متن کاملIARMMD: A Novel System for Incremental Association Rules Mining from Medical Documents
This paper presents a novel system for Incremental Association Rules Mining from Medical Documents (IARMMD). The system concerns with maintenance of the discovered association rules and avoids redoing the mining process on whole documents during the updating process. The design of the system is based on concepts representation. It designed to develop our previous D-EART system. The IARMMD impro...
متن کاملA Survey on Efficient Incremental Algorithm for Mining High Utility Itemsets in Distributed and Dynamic Database
Data Mining is the process of analyzing data from different perspectives and summarizing it into useful information. It can be defined as the activity that extracts information contained in very large database. That information can be used to increase the revenue or cut costs. Association Rule Mining (ARM) is finding out the frequent itemsets or patterns among the existing items from the given ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010